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Abstract. In the real world, we are confronted not only with complex
and high-dimensional data sets, but usually with noisy, incomplete and
uncertain data, where the application of traditional methods of knowl-
edge discovery and data mining always entail the danger of modeling
artifacts. Originally, information entropy was introduced by Shannon
(1949), as a measure of uncertainty in the data. But up to the present,
there have emerged many different types of entropy methods with a large
number of different purposes and possible application areas. In this pa-
per, we briefly discuss the applicability of entropy methods for the use
in knowledge discovery and data mining, with particular emphasis on
biomedical data. We present a very short overview of the state-of-the-
art, with focus on four methods: Approximate Entropy (ApEn), Sample
Entropy (SampEn), Fuzzy Entropy (FuzzyEn), and Topological Entropy
(FiniteTopEn). Finally, we discuss some open problems and future re-
search challenges.

Keywords: Entropy, Data Mining, Knowledge Discovery, Topological
Entropy, FiniteTopEn, Approximate Entropy, Fuzzy Entropy, Sample
Entropy, Biomedical Informatics

1 Introduction

Entropy, originating from statistical physics (see Section 3), is a fascinating and
challenging concept with many diverse definitions and various applications.
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Considering all the diverse meanings, entropy can be used as a measure for
disorder in the range between total order (structured) and total disorder (un-
structured) [1], as long as by order we understand that objects are segregated by
their properties or parameter values. States of lower entropy occur when objects
become organized, and ideally when everything is in complete order the Entropy
value is zero. These observations generated a colloquial meaning of entropy [2].
Following the concept of the mathematical theory of communication by Shannon
& Weaver (1949) [3], entropy can be used as a measure for the uncertainty in
a data set. The application of entropy became popular as a measure for system
complexity with the paper by Steven Pincus (1991) [4]: He described Approxi-
mate Entropy (see Section 5.1) as a statistic quantifying regularity within a wide
variety of relatively short (greater than 100 points) and noisy time series data.
The development of this approach was initially motivated by data length con-
straints, which is commonly encountered in typical biomedical signals including:
heart rate, electroencephalography (EEG), etc. but also in endocrine hormone
secretion data sets [5].

This paper is organized as follows: To ensure a common understanding we
start with providing a short glossary; then we provide some background infor-
mation about the concept of entropy, the origins of entropy and a taxonomy of
entropy methods in order to facilitate a ”big picture”. We continue in chapter
4 with the description of some application areas from the biomedical domain,
ranging from the analysis of EEG signals to complexity measures of DNA se-
quences. In chapter 5 we provide more detailed information on four particu-
lar methods: Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy
Entropy (FuzzyEn), and Topological Entropy (FiniteTopEn). In chapter 6 we
discuss some open problems and we conclude in chapter 7 with a short future
outlook.

2 Glossary and Key Terms

Anomaly detection: is finding patterns in data, non compliant to expected be-
havior (anomalies aka outliers, discordant observations, exceptions, aberrations,
surprises, peculiarities). A topic related to anomaly detection is novelty detec-
tion, aiming at detecting previously unobserved, emergent patterns in data [6].

Artifact: is any error, anomaly and/or undesired alteration in the perception
or representation of information from data.

Data quality: includes (physical) quality parameters including: Accuracy, Com-
pleteness, Update status, Relevance, Consistency, Reliability and Accessibility
[7], not to confuse with Information quality [8].

Dirty data: data which is incorrect, erroneous, misleading, incomplete, noisy,
duplicate, uncertain, etc. [9].
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Dirty time oriented data: time (e.g. time points, time intervals) is an impor-
tant data dimension with distinct characteristics affording special consideration
in the context of dirty data [10].

Dynamical system: is a manifold M called the phase-space and possess a family
of evolution functions φ(t) so that for any element of t ∈ T , the time, maps a
point of the phase-space back into the phase-space; If T is real, the dynamical
system is called a flow ; if T is restricted to the non-negative reals, it is a semi-
flow; in case of integers, it is called a cascade or map; and a restriction to the
non-negative integers results in a so-called semi-cascade [2];

Hausdorff Space: is a separated topological space in which distinct points have
disjoint neighbourhoods.

Hausdorff Measure: is a type of outer measure that assigns a number in [0,∞] to
each set in Rn. The zero-dimensional Hausdorff measure is the number of points
in the set, if the set is finite, or ∞ if the set is infinite. The one-dimensional
Hausdorff measure of a simple curve in Rn is equal to the length of the curve.
Likewise, the two dimensional Hausdorff measure of a measurable subset of R2 is
proportional to the area of the set. The concept of the Hausdorff measure gener-
alizes counting, length, and area. These measures are fundamental in geometric
measure theory.

Topological Entropy: is a nonnegative real number that is a measure of the com-
plexity of a dynamical system. TopEn was first introduced in 1965 by Adler,
Konheim and McAndrew. Their definition was modeled after the definition of
the Kolmogorov–Sinai, or metric entropy.

Heart rate variability (HRV): measured by the variation in the beat-to-beat
interval of heart beats.

HRV artifact: noise through errors in the location of the instantaneous heart
beat, resulting in errors in the calculation of the HRV.

Information Entropy: is a measure of the uncertainty in a random variable.
This refers to the Shannon entropy, which quantifies the expected value of the
information contained in a message.

3 Background

3.1 Physical Concept of Entropy

It is nearly impossible to write any paper on any aspect of entropy, without
referring back to classical physics: The concept of entropy was first introduced
in thermodynamics [11], where it was used to provide a statement of the second
law of thermodynamics on the irreversibility of the evolution, i.e. an isolated



4 Holzinger et al.

system cannot pass from a state of higher entropy to a state of lower entropy.
In classical physics any system can be seen as a set of objects, whose state is
parameterized by measurable physical characteristics, e.g. temperature. Later,
statistical mechanics provided a connection between the macroscopic property
of entropy and the microscopic state of a system by Boltzmann.

Shannon (1948) was the first to re-define entropy and mutual information, for
this purpose he used a thought experiment to propose a measure of uncertainty
in a discrete distribution based on the Boltzmann entropy of classical statistical
mechanics (see next section). For more details on the basic concepts of entropy
refer to [12].

3.2 Origins of Information Entropy

The foundation of information entropy (see Fig. 1) can be traced back into two
major origins, the older may be found in the work of Jakob Bernoulli (1713),
describing the principle of insufficient reason: we are ignorant of the ways an
event can occur, the event will occur equally likely in any way. Thomas Bayes
(1763) and Pierre-Simon Laplace (1774) carried on with works on how to cal-
culate the state of a system with a limited number of expectation values and
Harold Jeffreys and David Cox solidified it in the Bayesian Statistics, also known
as statistical inference.

The second path is leading to the classical Maximum Entropy, not quite cor-
rectly often called ”Shannon Entropy”, but indeed, Jaynes (1957) [13] makes it
clear on page 622/623 that he is utilizing Shannon’s Entropy to derive the Max-
imum Entropy Principle and that those are not synonym principles. Following
the path backwards the roots can be identified with the work of James Clerk
Maxwell (1859) and Ludwig Boltzmann (1871), continued by Willard Gibbs
(1902) and finally reaching Claude Elwood Shannon (1948). This work is geared
toward developing the mathematical tools for statistical modeling of problems in
information. These two independent lines of research are relatively similar. The
objective of the first line of research is to formulate a theory and methodology
that allows understanding of the general characteristics (distribution) of a given
system from partial and incomplete information. In the second route of research,
the same objective is expressed as determining how to assign (initial) numerical
values of probabilities when only some (theoretical) limited global quantities of
the investigated system are known. Recognizing the common basic objectives of
these two lines of research aided Jaynes (1957) in the development of his classical
work, the Maximum Entropy formalism (see also Fig. 2). This formalism is based
on the first line of research and the mathematics of the second line of research.
The interrelationship between Information Theory, statistics and inference, and
the Maximum Entropy (MaxEnt) principle became clear in the 1950s, and many
different methods arose from these principles [14], see Fig. 2.For more details on
information entropy refer to [2].
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Fig. 1. The ”big picture” in the developent of the concept of entropy [15]

3.3 Towards a Taxonomy of Entropy Methods

Maximum Entropy (MaxEn), described by [16], is used to estimate unknown
parameters of a multinomial discrete choice problem, whereas the Generalized
Maximum Entropy (GME) includes noise terms in the multinomial information
constraints. Each noise term is modeled as the mean of a finite set of known
points in the interval [-1,1] with unknown probabilities where no parametric as-
sumptions about the error distribution are made. A GME model for the multi-
nomial probabilities and for the distributions, associated with the noise terms is
derived by maximizing the joint entropy of multinomial and noise distributions,
under the assumption of independence [16].
Graph Entropy was described by [17] to measure structural information con-
tent of graphs, and a different definition, more focused on problems in infor-
mation and coding theory, was introduced by Körner in [18]. Graph entropy is
often used for the characterization of the structure of graph-based systems, e.g.
in mathematical biochemistry, but also for any complex network [19]. In these
applications the entropy of a graph is interpreted as its structural information
content and serves as a complexity measure, and such a measure is associated
with an equivalence relation defined on a finite graph; by application of Shan-
nons Eq. 2.4 in [20] with the probability distribution we get a numerical value
that serves as an index of the structural feature captured by the equivalence
relation [20].

Minimum Entropy (MinEn), described by [21], provides us the least random,
and the least uniform probability distribution of a data set, i.e. the minimum
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uncertainty. Often, the classical pattern recognition is described as a quest for
minimum entropy. Mathematically, it is more difficult to determine a minimum
entropy probability distribution than a maximum entropy probability distribu-
tion; while the latter has a global maximum due to the concavity of the entropy,
the former has to be obtained by calculating all local minima, consequently the
minimum entropy probability distribution may not exist in many cases [22].
Cross Entropy (CE), discussed by [23], was motivated by an adaptive algo-
rithm for estimating probabilities of rare events in complex stochastic networks,
which involves variance minimization. CE can also be used for combinatorial
optimization problems (COP). This is done by translating the deterministic op-
timization problem into a related stochastic optimization problem and then using
rare event simulation techniques [24].
Rényi Entropy is a generalization of the Shannon entropy (information the-
ory).
Tsallis Entropy is a generalization of the BoltzmannGibbs entropy and was
intended for statistical mechanics by Constantino Tsallis [25]; a decade ago it
has been applied to computer science, see e.g. a pattern recognition example
[26].
Approximate Entropy (ApEn), described by [4], is useable to quantify regu-
larity in data without any a priori knowledge about the system.
Sample Entropy (SampEn), was used by [27] for a new related measure of
time series regularity. SampEn was designed to reduce the bias of ApEn and is
better suited for data sets with known probabilistic content.
Fuzzy Entropy (FuzzyEn), proposed by [28], replaces the Heaviside function
to measure the similarity of two vectors as used in SampEn and ApEn by a fuzzy
relationship function. This leads to a weaker impact of the threshold parameter
choice.
Fuzzy Measure Entropy (FuzzyMEn), presented in [29], is an enhancement
of FuzzyEn, by differentiating between local and global similarity.
Topological Entropy (TopEn), was introduced by [30] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T ) be a topological dynamical system, i.e., let X be a nonempty compact
Hausdorff space and T : X → X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [31].
Topological Entropy for Finite Sequences (FiniteTopEn) was introduced
in [32] by taking the definition of TopEn for symbolic dynamical systems and
developing a finite approximation suitable for use with finite sequences.
Algorithmic Entropy or Kolmogorov Complexity was independently intro-
duced by Solomonoff [33,34], Kolmogorov [35] and Chaitin [36]. The algorithmic
entropy of a string is formally defined as the length of a shortest program for a
universal computer that outputs the string and stops.
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Fig. 2. A rough, incomplete overview on the most important entropy methods [15]

4 Application Areas

Entropy concepts found its way into many diverse fields of application within
the biomedical domain:

Acharya et al. [37] proposed a methodology for the automatic detection of
normal, pre-ictal, and ictal conditions from recorded EEG signals. Beside Ap-
proximate Entropy, they extracted three additional entropy variations from the
EEG signals, namely Sample Entropy (SampEn), Phase Entropy 1 and Phase
Entropy 2. They fed those features to seven different classifiers, and were able
to show that the Fuzzy classifier was able to differentiate the three classes with
an accuracy of 98.1 %. For this they took annotated recordings of five healthy
subjects and five epilepsy patients. They showed that both ApEn and SampEn
are higher in the case of normal signals, and lower for pre-ictal and ictal classes,
indicating more self-similarity of the two later segments.

Hornero et al. [38] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

In the field of Electrocardiography analysis, Batchinsky et al. [39] recently
performed a comprehensive analysis of the ECG and Artificial Neural Networks
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(ANN) to improve care in the Battlefield Critical Care Environment, by devel-
oping new decision support systems that take better advantage of the large data
stream available from casualties. For that purpose they analyzed the heart rate
complexity of 800-beat sections of the R-to-R interval (RRI) time series from
262 patients by several groups of methods, including ApEn and SampEn. They
concluded that based on ECG-derived noninvasive vital signs alone, it is possible
to identify trauma patients who undergo Life-saving interventions using ANN
with a high level of accuracy. Entropy was used to investigate the changes in
heart rate complexity in patients undergoing post-burn resuscitation.

Pincus et al. took in [4] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

In [40] Sarlabous et al. used diaphragmatic MMG signals of dogs. The animals
performed an inspiratory progressive resistive load respiratory test during the
acquisition, in order to increase the respiratory muscular force. Afterwards the
Approximate Entropy of these recordings were calculated and showed that these
are able to quantify amplitude variations.

SampEn and ApEn were used in order to study gait data sets in [41]. For
this purpose 26 healthy young adult and 24 healthy older adult subjects walked
at least 200 steps on a treadmill. Their movement was tracked and step length,
step width, and step time were calculated from the recordings. Both SampEn and
ApEn showed significant differences between the younger and the older subjects
in the step length and step width data sets.

In [42] Roerding et al. compared the postural sway of 22 stroke patients
with 33 healthy also elderly subjects using different statistical tools including
SampEn. All subjects were asked to do three trials while their sway was recorded.
SampEn was significantly lower for the stroke patients.

The degree of randomness of a sequence is tightly related to its complexity,
predictability, compressibility, repeatability and, ultimately, to the information
theoretic notion of entropy. Most often, in genomics sequence analysis, infor-
mation theoretic approaches are used (sometimes implicitly) to look for and
to display information related to the degree of randomness of the sequences,
aiming at finding meaningful structures. Early approaches include the sequence
landscapes [43] and the sequence logos [44].

Pinho discusses some examples [45]: Some methods provide visual informa-
tion of global properties of the DNA sequences. For example, the chaos game
representation (CGR) [46] uses a distribution of points in an image to express
the frequency of the Oligonucleotides that compose the sequence [47]. From these
CGR images, other global representations can be derived, such as the entropic
profiles [48], originally estimated using global histograms of the oligonucleotide
frequencies, calculated using CGR images. Later, they have been generalized by
Vinga et al. [49], based on the Rényi entropy, in order to calculate and visual-
ize local entropic information. Other approaches for estimating the randomness
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along the sequence have also been proposed. For example, Crochemore et al.
[50] used the number of different oligonucleotides that are found in a window of
predefined size for estimating the entropy.

The idea of showing local information content while taking into account the
global structure of the sequence was also addressed by Allison et al. [51]. Based
on a statistical model, they have produced information sequences, which quantify
the amount of surprise of having a given base at a given position (and, therefore,
in some sense are estimates of the local entropy), knowing the remaining left (or
right) part of the sequence. When plotted, these information sequences provide
a quick overview of certain properties of the original symbolic sequence, allowing
for example to easily identify zones of rich repetitive content [52,53,54].

The information sequences of Allison et al. [51] are tightly related to data
compression and, consequently, to entropy estimation. In fact, the importance
of data compression for pattern discovery in the context of DNA sequences was
initially addressed by Grumbach et al. [55] and, since then, studied by others
(e.g. [56,52]).

The existence of regularities in a sequence renders it algorithmically com-
pressible. The algorithmic information content of a sequence is the size, in bits,
of its shortest reversible description and hence an indication of its complexity
and entropy. Complexity measures of DNA sequences have been explored by sev-
eral researchers (e.g. [57,58,59]). In this case, the key concept is the algorithmic
entropy. Let x denote a binary string of finite length. Its algorithmic entropy,
K(x), is defined as the length of a shortest binary program x∗ that computes
x in a universal Turing machine and halts [60]. Therefore, K(x) = |x∗|, the
length of x∗, represents the minimum number of bits of a program from which
x can be computationally retrieved [61]. Although conceptually quite different,
the algorithmic entropy is closely related to Shannon’s entropy [61].

Because the algorithmic entropy is non-computable [61], it is usually approxi-
mated, for example, by compression algorithms [62,54,63,45]. In fact, compression-
related approaches have been used not only for estimating the entropy, but also
for building DNA sequence signatures capable of supporting the construction of
meaningful dendograms [64]. In this case, estimates of the entropy associated
with each of the three bases of the DNA codons are used to construct entropy
vectors. Compression has also been used for measuring distances, such as in [65],
where a genome-wide, alignment-free genomic distance based on compressed
maximal exact matches is proposed for comparing genome assemblies.

Holzinger et al. (2012) [66] experimented with point cloud data sets in the
two dimensional space: They developed a model of handwriting, and evaluated
the performance of entropy based slant and skew correction, and compared the
results to other methods. This work is the basis for further entropy-based ap-
proaches, which are very relevant for advanced entropy-based data mining ap-
proaches.
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5 Detailed Description of selected Entropies

5.1 Approximate Entropy (ApEn)

Approximate Entropy measures the logarithmic likelihood that runs of patterns
that are close remain close on following incremental comparisons [4]. We state
Pincus’ definition [4,5], for the family of statistics ApEn(m, r,N):

Definition 1. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series u(t), a sequence of vectors x(1)m,xm(2), . . . ,xm(N−
m+ 1) in IRm is formed, defined by

xm(i) := [u(ti), u(ti+1), . . . , u(ti+m−1)] . (1)

Define for each i, 1 ≤ i ≤ N −m+ 1,

Cm
i (r) :=

number of j such that d[xm(i),xm(j)] ≤ r
N −m+ 1

, (2)

where d[x(i),x(j)] is the Chebyshev distance given by:

d[xm(i),xm(j)] := max
k=1,2,...,m

(
|u (ti+k−1)− u (tj+k−1) |

)
. (3)

Furthermore, define

Φm(r) := (N −m+ 1)−1
N−m+1∑

i=1

logCm
i (r) , (4)

then the Approximate Entropy is defined as

ApEn(m, r,N) := Φm(r)− Φm+1(r) . (5)

5.2 Sample Entropy (SampEn)

Richman and Moorman showed in [27] that approximate entropy is biased to-
wards regularity. Thus, they modified it to Sample Entropy. The main difference
between the two is that sample entropy does not count self-matches, and only
the first N −m subsequences instead of all N −m + 1 are compared, for both
φm and φm+1 [27]. Similar to ApEn above, SampEn is defined as follows:

Definition 2. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series U(t), a sequence of vectors xm(1),xm(2), . . . ,xm(N−
m+1) ∈ Rm is formed, defined by Eq. (1). Define for each i, 1 ≤ i ≤ N−m+1 ,

Cm
i =

number of j such that d[xm(i),xm(j)] ≤ r and i 6= j

N −m+ 1
, (6)
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where d[(i), (j)] is the Chebyshev distance (see Eq. (3)). Furthermore, define

Φm(r) := (N −m)−1
N−m∑
i=1

Cm
i (r) , (7)

then the Sample Entropy is defined as

SampEn(m, r,N) := log(Φm(r))− log(Φm+1(r)) . (8)

5.3 Fuzzy (Measure) Entropy (Fuzzy(M)En)

To soften the effects of the threshold value r, Chen et al. proposed in [28] Fuzzy
Entropy, which uses a fuzzy membership function instead of the Heaviside func-
tion. FuzzEn is defined the following way:

Definition 3. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series U(t), a sequence of vectors xm(1),xm(2), . . . ,xm(N−
m+ 1) ∈ Rm is formed, as defined by Eq. (1). This sequence is transformed into
xm(1),xm(2), . . . ,xm(N −m+ 1), with xm(i) := {u(ti)− u0i, . . . , u(ti+m−1)−
u0i}, where u0i is the mean value of xm(i), i.e.

u0i :=

m−1∑
j=0

ui+j

m
. (9)

Next the fuzzy membership matrix is defined as:

Dm
i,j := µ(d(xmi , x

m
j ), n, r) , (10)

with the Chebyshev distance d (see Eq. (3)) and the fuzzy membership function

µ(x, n, r) := e−(x/r)
n

. (11)

Finally, with

φm :=
1

N −m

N−m∑
i=1

N−m∑
j=1,j 6=i

Dm
i,j

N −m− 1
, (12)

the Fuzzy Entropy is defined as:

FuzzyEn(m, r, n,N) := lnφm − lnφm+1 . (13)

Liu et al. proposed in [29] Fuzzy Measure Entropy, which introduces a
distinction between local entropy and global entropy, based on FuzzyEn. It is
defined as:

FuzzyMEn(m, rL, rF , nL, nF , N) := lnφmL − lnφm+1
L + lnφmF − lnφm+1

F , (14)

where the local terms φmL and φm+1
L are calculated as in Eq. (12) and the global

terms φmF and φm+1
F are calculated with Eq. (10) and Eq. (12), but with xm(i) :=

{u(ti)−umean, . . . , u(ti+m−1)−umean}, where umean is the mean value of the
complete sequence u(t).
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5.4 Topological Entropy for Finite Sequences (FiniteTopEn)

As seen above, ApEn, SampEn, and Fuzzy(M)En all require the selection of
a threshold value r which can significantly change the value of the associated
entropy. FiniteTopEn differs from these definitions in that no threshold selec-
tion is required. FiniteTopEn is defined in the following way. First, define the
complexity function of a sequence (finite or infinite) to be the following:

Definition 4. For a given sequence w, the complexity function pw : N → N is
defined as

pw(n) = |{u : |u| = n and u appears as a subword of w}| .

So pw(n) gives the number of distinct n-length subwords (with overlap) of w.
Then FiniteTopEn is defined as follows.

Definition 5. Let w be a finite sequence of length |w| constructed from an al-
phabet A of m symbols. Let n be the unique integer such that

mn + n− 1 ≤ |w| < mn+1 + n.

Then for v = wmn+n−1
1 the first mn + n− 1 letters of w, the topological entropy

of w is defined to be

FiniteTopEn(w) =
1

n
logm (Pv(n)) .

FiniteTopEn is defined in this way primarily so that entropies of different
length sequences and on possibly different alphabets can still be compared. Of
course, if more is known about the process that generates a given sequence w,
then the above definition can be modified as necessary (for example, by picking
a smaller n or else not truncating w). The definition given above makes the least
amount of assumptions regarding w (i.e. assumes that w was generated via the
full shift). It is not difficult to demonstrate that as |w| → ∞, FiniteTopEn(w)
converges to TopEn(w), that is, to the topoloical entropy of w as originally
defined in [30].

6 Open Problems

The main challenges in biomedical informatics today include [15], [67]:

– Heterogeneous data sources (need for data integration and data fusion)
– Complexity of the data (high-dimensionality)
– The discrepancy between data-information-knowledge (various definitions)
– Big data sets (which makes manual handling of the data nearly impossible)
– Noisy, uncertain data (challenge of pre-processing).

Particularly, on the last issue, dealing with noisy, uncertain data, entropy
based methods might bring some benefits. However, in the application of entropy
there are a lot of unsolved problems. We focus here on topological entropy, as
this can be best used for data mining purposes.
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Problem 1. There is no universal method to calculate or estimate the
topological entropy. Zhou & Fang described in [68] topological entropy as
one of the most important concepts in dynamical systems but they described
also a number of open problems: TopEn describes the complexity of the motion
in the underlying space caused by a continuous or differential action, i.e.: the
bigger the topological entropy, the more complex the motion. Consequently,
to obtain (calculate, measure, estimate) the topological entropy is an important
research topic in dynamical systems. But as in the case of the Hausdorff measure,
calculating the exact value of the topological entropy is, in general, very difficult,
as to date there is no universal method. One might debate the clause estimate in
the begin of this paragraph, since topological entropy can indeed be estimated
(see Problem 2) for an arbitrary symbolic dynamical system. Then, a wide range
of arbitrary dynamical systems can be approximated by an appropriate symbolic
dynamical system.

Problem 2. A problem that has not been mentioned so far is the fact that to
correctly estimate entropy (of any sort, and FiniteTopEnt in particular), one
needs access to many data points. This is certainly not always the case, and so
it would be beneficial to have something like a re-sampling/bootstrap regime.
Since order matters to topological entropy, traditional bootstrapping cannot be
used, which poses a big open problem.

Problem 3. How can sparse/infrequent data be re-sampled in a fashion appro-
priate to better estimate entropy.

Problem 4. For instance, for continuous mappings of the interval, the topological
entropy being zero is equivalent to the period of any periodic point being a power
of 2. For a general dynamical system, no similar equivalence condition has been
obtained. A breakthrough regarding this depends upon a breakthrough in the
investigation of the kernel problem of dynamical systems: the orbits topological
structures or asymptotic behavior. An excellent source for this topic is [2].

Problem 5. The study of the topics mentioned in problem 4, is closely related to
the ones in ergodic theory such as the invariant measure, the measure-theoretic
entropy and the variational principle, as well as some fractal properties. Hence,
the study of topological entropy has much potential in three fields: topology,
ergodic theory and fractal geometry; albeit this will probably not unify these
methods, topological entropy finds itself at the intersection of these subfields of
mathematics.

Problem 6. In contrast to problem 5, FiniteTopEn is an approximation to topo-
logical entropy that is free from issues associated to choosing a threshold (prob-
lem 2). It was also shown in [32] that FiniteTopEn is computationally tractable,
both theoretically (i.e its expected value) and practically (i.e. in computing en-
tropy of DNA sequences). Applying this definition to the intron and exon regions
of the human genome, it was observed that, as expected, the entropy of introns
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is significantly higher that that of exons. This example demonstrates that this
parameter-free estimate of topological entropy is potentially well-suited to dis-
cern salient global features of weakly structured data.

Problem 7. How to select parameters for the entropy measures? Each entropy
has a number of parameters to be selected before application. Thus, there are
a large number of possible combinations of parameters. By now, this problem
has not yet been solved especially for ApEn, SampEn, FuzzyEn and FuzzyMEn.
There are different parameter sets published (e.g., [4,69,70,41,71]), but up to
now not all possible combinations were tested and no consensus was reached.
The parameter sets cover certain application areas, but are dependent on the
data and its type. An example is the choice of the threshold value r according to
[69]. It is used only in the context of heart rate variability data and not applied
to other data.

Problem 8. How to use entropy measures for classification of pathological and
non-pathological data? In biomedical data, the goal is to discriminate between
pathological and non-pathological measurements. There is still little evidence
on how to use entropy measures for this classification problem and which data
ranges to use. This is directly related to the parameter selection, since one of the
hardest difficulties for ApEn, SampEn, FuzzyEn and FuzzyMEn lies in the choice
of the threshold value r due to the flip-flop effect, i.e., for some parameters one
data set has a higher entropy compared to another, but this order is reversed
for different parameter choices [70,72]. This can occur for simple signals, but
also when analyzing heart rate variability data, as shown in [71]. This leads to
difficulties with the interpretation of the entropy, i.e., the direct assignment of
entropy values to pathological or non-pathological data without a given r.
Finally a few very short questions poses mega challenges in these area:

Problem 9. How to generally benchmark entropy measures?

Problem 10. How to select appropriate entropy measures and their parameters
to solve a particular problem?

7 Conclusion and Future Outlook

Entropy measures have successfully been tested for analyzing short, sparse and
noisy time series data. However they have not yet been applied to weakly
structured data in combination with techniques from computational
topology. Consequently, the inclusion of entropy measures for discovery of
knowledge in high-dimensional biomedical data is a big future issue and there
are a lot of promising research routes.
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