How different are Cats and Cells in Histopathology?

An awesome question stated in an article by Michael Bereket and Thao Nguyen (Febuary 7, 2018) brings it straight to the point: Deep learning has revolutionized the field of computer vision. So why are pathologists still spending their time looking at cells through microscopes?

The most famous machine learning experiments have been done with recognizing cats (see  the video by Peter Norvig) – and the question is relevant, how different are these cats from the cells in histopathology?

Machine Learning, and in particular deep learning, has reached a human-level in certain tasks, particularly in image classification. Interestingly, in the field  of pathology these methods are not so ubiqutiously used currently. A valid question indeed is: Why do human pathologists spend so much time with visual inspection? Of course we restrict this debate on routine tasks!

This excellent article is worthwhile giving a read:
Stanford AI for healthcare: How different are cats from cells

Source of the animated gif above:
https://giphy.com/gifs/microscope-fluorescence-mitosis-2G5llPaffwvio

Yoshua Bengio emphasizes: Deep Learning needs Deep Understanding !

Yoshua BENGIO from the Canadian Institute for Advanced Research (CIFAR) emphasized during his workshop talk entitled “towards disentangling underlying explanatory factors”  (cool title) at the ICML 2018 in Stockholm, that the key for success in AI/machine learning is to understand the explanatory/causal factors and mechanisms. This means generalizing beyond identical independent data (i.i.d.); current machine learning theories are strongly dependent on this iid assumption, but applications in the real-world (we see this in the medical domain!) often require learning and generalizing in areas simply not seen during the training epoch. Humans interestingly are able to protect themselves in such situations, even in situations which they have never seen before. See Yoshua BENGIO’s awesome talk here:
http://www.iro.umontreal.ca/~bengioy/talks/ICMLW-limitedlabels-13july2018.pptx.pdf

and here a longer talk (1:17:04) at Microsoft Research Redmond on January, 22, 2018 – awesome – enjoy the talk, I recommend it cordially to all my students!

Federated Machine Learning – Privacy by Design won

Federated machine learning – privacy by design EU-project granted!

Good news from Brussels: Our EU RIA project application 826078 FeatureCloud with a total volume of EUR 4,646,000,00 has just been granted. The project was submitted to the H2020-SC1-FA-DTS-2018-2020 call “Trusted digital solutions and Cybersecurity in Health and Care”. The lead is done by TU Munich and we are excited to work in a super cool project consortium together with our partners for the next 60 months. The project’s ground-breaking novel cloud-AI infrastructure only exchanges learned representations (the feature parameters theta θ, hence the name “feature cloud”) which are anonymous by default (no hassle with “real medical data” – no ethical issues). Collectively, our highly interdisciplinary consortium from AI and machine learning to medicine covers all aspects of the value chain: assessment of cyber risks, legal considerations and international policies, development of state-of-the.-art federated machine learning technology coupled to blockchaining and encompasing AI-ethics research. FeatureCloud’s goals are challenging bold, obviously, but achievable, and paving the way for a socially agreeable big data era for the benefit of future medicine. Congratulations to the great project consortium!

Judea Pearl on explainable-AI: teach machines cause and effect

To build truly intelligent machines, teach them cause and effect, emphasizes Judea PEARL in a recent Quanta Magazine article (May, 15, 2018) posted by Kevin HARTNETT. Judea Pearl won in 2011 the Turing Award (“the Nobel Prize in Computer Science”) and just published his newest book, called “The book of why: the new science of cause and effect”, wherein Pearl argues that AI has been handicapped by an incomplete understanding of what intelligence really is. Causal reasoning is a cornerstone in explainable-AI!

Read the interesting article here:
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515

The book is also announced by the UCLA newsroom, along with a nice interview see:
http://newsroom.ucla.edu/stories/artificial-intelligence-pioneers-new-book-examines-the-science-of-cause-and-effect

 

The Problem with explainable-AI

A very nice and interesting article by Rudina SESERI in the recent TechCrunch blog (read the orginal blog entry below): at first Rudina points out that the main problem is in data; and yes, indeed, data should always be the first consideration. We consider it a big problem that successful ML approaches (e.g. the mentioned deep learning, our PhD students can tell you a thing or two about it 😉 greatly benefit from big data (the bigger the better) with many training sets; However, it certain domain, e.g. in the health domain we sometimes are confronted with a small number of data sets or rare events, where we suffer of insufficient training samples [1]. This calls for more research towards how we can learn from little data (zero-shot learning), similar as we humans do: Rudina does not need to show her children 10 million samples of a dog and a cat, so that her children can safely discriminate a dog from a cat. However, what I miss in this article is something different, the word trust. Can we trust our machine learning results? [2] Whilst, for sure we do not need to explain everything all the time, we need possibilities to make machine decisions transparent on demand and to check if something could be plausible. Consequently, Explainable AI can be very important to foster trust in machine learning specifically and artificial intelligence generally.

[1] https://link.springer.com/article/10.1007/s40708-016-0042-6

[2] https://ercim-news.ercim.eu/en112/r-i/can-we-trust-machine-learning-results-artificial-intelligence-in-safety-critical-decision-support

 

 

MIT emphasizes the importance of HCI for explainable AI

In a joint project “The car can explain” with the TOYOTA Research Institute  the MIT Computer Science & Artificial Intelligence Lab  are working on explainable AI and emphasize the increasing importance of the field of HCI (Human-Computer Interaction) in this regard. Particularly, the group led by Lalana KAGAL is working on monitors for reasoning and explaining: a methodological tool to interpret and detect inconsistent machine behavior by imposing constraints of reasonableness. “Reasonable monitors” are implemented as two types of interfaces around their complex AI/ML frameworks. Local monitors check the behavior of a specific subsystem, and non-local reasonableness monitors watch the behavior of multiple subsystems working together: neighborhoods of interconnected subsystems that share a common task. This enormously interesting monitoring consistently checks that the neighborhood of subsystems are cooperating as expected. Insights of this projects could also be valuable for the health informatics domain:

https://toyota.csail.mit.edu/node/21

Google Brain says Explainability is the “new deep learning”

There is a very interesting interview in the Talking Machines*) series from May, 31, 2018. Katherine GORMAN interviews Maithra RAGHU **) from the Google Brain Team, where she mentioned that “explainability is the new deep learning”, and it is particularly important for health informatics, where it is important to re-trace, re-enact and to understand and explain why a machine decision has been reached. This is super for us, because when I tell my students that this is important, nobody believes me; but now I can emphasize that not I am saying that, but Google Brain is saying it. Excellent.

However, the whole field needs a lot of work, before we can provide useable solutions for the end-user in daily routine (e.g. a medical doctor); urgently needed are approaches to explainable User Interfaces and most of all a research framework for testing explainability.

*) Talking Machine is an excellent, highly recommendable Podcast series, founded by Katharine GORMAN and Ryan ADAMS in 2015 and now run by Katharine together with Neil LAWRENCE (who leads the Amazon Research in Cambridge, UK).

**) Maithra RAGHU is currently a PhD working with Jon KLEINBERG at Cornell (see http://maithraraghu.com ), where she is doing extended research with the Google Brain Team, see: https://ai.google/research/teams/brain
Maithra has published some very interesting papers, e.g.: Maithra Raghu, Justin Gilmer, Jason Yosinski & Jascha Sohl-Dickstein. SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. Advances in Neural Information Processing Systems, 2017. 6078-6087.
or this is also very interesting:
Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein & Surya Ganguli. Exponential expressivity in deep neural networks through transient chaos. Advances in neural information processing systems, 2016. 3360-3368.

Google Brain says we urgently need a Research Framework around the field of interpretability

In a recent interview Been KIM from the Google Brain team emphasizes the significance of research in explainable AI. Particularly, she emphasized the importance of Human-Computer Interaction (HCI) for Artificial Intelligence generally and Machine Learning specifically (see the differences between AI and ML here), and the urgent need of an research framework around the field of interpretability. Listen to the episode six of season four of Talking Machines by Katherine GORMAN and Neil LAWRENCE here (Start at approx. 26:00): https://www.thetalkingmachines.com/episodes/explainability-and-inexplicable

Been KIM is a research scientist at the Google Brain team and is interested in designing machine learning methods that  make sense to humans. Her current focus is building interpretability methods for already-trained models (e.g., high performance neural networks). In particular, she believes that the language of explanations should include higher-level, human-friendly concepts.  Been gave a tutorial on explainable AI at ICML 2017 and recently the group published the paper: Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman & Finale Doshi-Velez 2018. How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation. arXiv:1802.00682.
http://people.csail.mit.edu/beenkim

“Machine Learning for Health Informatics” Lecture Notes in Artificial Intelligence 9605 > 40,626 downloads 2017

Since its online publication on December 10, 2016 the Volume edited by Andreas Holzinger “Machine Learning for Health Informatics” Springer Lecture Notes in Artificial Intelligence LNAI Volume 9605, has been downloaded 54,960 times as of today (May, 11, 2018, 20:00 CEST) and 44,988 with status as of April 2018 according to the official Springer Bookmetrix book performance report – a record; and alone in the year 2017 40,626 downloads, which is 10 times higher than a typical volume of the series of Lecture Notes in Artificial Intelligence by Springer/Nature. A cordial thank you for my international colleagues for this huge acceptance!

http://www.springer.com/978-3-319-50478-0

https://www.springer.com/gp/book/9783319504773

A popular passage from the book:
https://books.google.com/talktobooks/query?q=What%E2%80%99s%20the%20difference%20between%20Machine%20Learning%20and%20deep%20learning%3F

Update on 15th September 2018: 63k downloads

 

AI will change Radiology – NOT replace Radiologists

After the rather shocking statement of Geoffrey HINTON during the Machine Learning and Market for Intelligence Conference in Toronto, where he recommended that hospitals should stop training radiologists, because deep learning will replace them (watch video below), on March, 27, 2018 Thomas H. DAVENPORT and Keith J. DREYER published a really nice article on “AI will change radiology, but it won’t replace radiologists” (see [1]) – which supports our human-in-the-loop approach: for sure, AI/machine learning (difference here) will change workflows, but we envision that the expert will be augmented by new technologies, i.e. routine (boring) tasks will be replaced by automatic algorithms, but this will free up expert time to spent on challenging (cool) tasks and more research – and there are plenty of problems where we need human intelligence!

[1] https://hbr.org/2018/03/ai-will-change-radiology-but-it-wont-replace-radiologists