Yoshua Bengio emphasizes: Deep Learning needs Deep Understanding !

Yoshua BENGIO from the Canadian Institute for Advanced Research (CIFAR) emphasized during his workshop talk entitled “towards disentangling underlying explanatory factors”  (cool title) at the ICML 2018 in Stockholm, that the key for success in AI/machine learning is to understand the explanatory/causal factors and mechanisms. This means generalizing beyond identical independent data (i.i.d.); current machine learning theories are strongly dependent on this iid assumption, but applications in the real-world (we see this in the medical domain!) often require learning and generalizing in areas simply not seen during the training epoch. Humans interestingly are able to protect themselves in such situations, even in situations which they have never seen before. See Yoshua BENGIO’s awesome talk here:
http://www.iro.umontreal.ca/~bengioy/talks/ICMLW-limitedlabels-13july2018.pptx.pdf

and here a longer talk (1:17:04) at Microsoft Research Redmond on January, 22, 2018 – awesome – enjoy the talk, I recommend it cordially to all my students!