185.A83 Machine Learning for Health Informatics
2017S, VU, 2.0 h, 3.0 ECTS
Tutorial 02 - 04.04.2017

Tutorial on
Probabilistic Programming
with PyMC3

florian.endel@tuwien.ac.at
http://hci-kdd.org/machine-learning-for-health-informatics-course
Schedule

- 01. Introduction to Probabilistic Programming
- 02. PyMC3
- 03. linear regression – the Bayesian way
- 04. generalized linear models with PyMC3
- **Probabilistic Programming (PP)**
 - allows automatic Bayesian inference
 - on complex, user-defined probabilistic models
 - utilizing “Markov chain Monte Carlo” (MCMC) sampling

- **PyMC3**
 - a PP framework
 - compiles probabilistic programs on-the-fly to C
 - allows model specification in Python code

Properties of Probabilistic Programs

- **IS NOT**
 - Software that behaves probabilistically
 - General programming language

- **IS**
 - Toolset for statistical / Bayesian modeling
 - Framework to describe probabilistic models
 - Tool to perform (automatic) inference
 - Closely related to graphical models and Bayesian networks
 - Extension to basic language (e.g. PyMC3 for Python)

“does in 50 lines of code what used to take thousands”

- Machine learning algorithms / models often a black box
 → PP “open box”
- Simple approach
 1. Define and build model
 2. Automatic inference
 3. Interpretation of results
 → not much equations anymore!
- “inference”: guess latent variables based on observations, using e.g. MCMC
Markov chain Monte Carlo (MCMC)

- Markov chain
 - Stochastic process
 - “memoryless” (Markov property)
 - Conditional probability distribution of future states depends only upon the present state
- Sampling from probability distributions
 - State of chain \rightarrow sample of distribution
 - Quality improves with number of steps
- Class of algorithms / methods
- Numerical approximation of complex integrals
Markov chain Monte Carlo (MCMC)
Markov chain Monte Carlo (MCMC)

- Metropolis-Hastings: random walk
- Gibbs-sampling: popular, complex, no tuning
- PyMC3
 - No-U-Turn Sampler (NUTS)
 - Hamiltonian Monte Carlo (HMC)
 - Metropolis
 - Slice
 - BinaryMetropolis
Prior & posterior distributions

- Quantity of interest: \(\theta \) (theta)
- Prior = probability distribution
 - Uncertainty before observation: \(p(\theta) \)
 - Belief in absence of data
- Posterior = probability distribution
 - Uncertainty after observation \(X \): \(p(\theta|X) \)
- Likelihood: \(p(X|\theta) \)

\[\text{Posterior} \propto \text{Likelihood} \times \text{Prior} \]

\[p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} \]

- Calculating posterior from observation and prior = updating beliefs

Coin toss example
- Python 3 package / framework
- Probabilistic machine learning
- **specification** and **fitting** of Bayesian models
- Inference by MCMC & variational fitting algorithms
- Performance enhancements: cross-compilation to C (Python numerical computation package “Theano”)
- Accessible, natural syntax
- Various capabilities: GPU computing, sampling backends, object-oriented, extendable design
- PyMC3 syntax introduction
- linear regression – the Bayesian way
- generalized linear models with PyMC3
Thank you!
Sample Questions

- What is probabilistic programming? What type of problems can be solved?
- What are the typical steps in a probabilistic program?
- What is inference?
- What is PyMC3?
- What is the posterior distribution?
Main sources

- Davidson-Pilon, C. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. (Addison-Wesley Professional, 2015).